Fujifilm launches Activ Hybrid LED UV retrofit system

Significant environmental benefits are just one major advantage of the newly launched Activ Hybrid LED UV curing system. It combines the latest, high power, low heat LED UV curing technologies with Fujifilm’s ink expertise to improve label production on narrow web presses. This enables traditional UV or water-based flexo presses to be seamlessly converted to LED UV curing. Significant environmental, cost and material savings as well as higher productivity and quality are the result.

We are delighted to be bringing such an innovative product to market. Fujifilm is proud to be the only supplier able to offer both a state of-the-art LED curing system and a high performance LED ink range to the label and packaging industry.

Manuel Schrutt, Head of Packaging, Fujifilm Europe

Fujifilm reveals FUJIFILM PROJECTOR Z6000

The development of the new FUJIFILM Projector Z6000 was announced, joining the lineup of the Z Series of ultra-short-throw projectors equipped with the world’s first “folded two-axial rotatable lens.”

The lens can be tilted 90 degrees from the lens mount axis and rotated 360 degrees on the lens axis

In recent years, the field of application for projectors has changed from business presentations or video projection at offices and educational institutions, to spatial design at commercial facilities, museums, and art galleries. Consequently, expectations towards projectors and their features are changing.

The Relentless Pursuit of Tomorrow: How technology is helping doctors make more informed decisions

As life expectancy increases for people worldwide, so does the challenge for doctors and the healthcare system. How can Fujifilm’s innovative and advanced technology help ease the burden on doctors and solve diagnostic problems? Discover how Fujifilm’s diagnostic imaging and medical AI technology can support healthcare professionals in this article.

The content has been produced in partnership with CNN International Commercial and FUJIFILM Global.

The Relentless Pursuit of Tomorrow: The Journey Toward More Accessible Medicine

How is the development of films related to the production of biopharmaceuticals? This is exactly the question this article from the series “The ruthless pursuit of tomorrow” will answer for you. Join Fujifilm’s biopharmaceutical CDMO production arm, FUJIFILM Diosynth Biotechnologies, on its journey toward more accessible medicine. Are you also excited to see where the planned global expansion will take us?

Read more about the work of FUJIFILM Diosynth Biotechnologies and its fascinating goals that will be achieved soon, thanks to our technology.

Discover Fujifilm’s state-of-the-art technologies and laboratories and learn how we fight diseases with biotechnology.

The content has been produced in partnership with CNN International Commercial and FUJIFILM Global.

High-Quality Beer…Thanks to Film technology

For 88 years now, Fujifilm continued to transform itself. Photographic film technologies have always been at the core of our business, and over many years, we have applied these technologies to a wide range of uses. But did you know we are also part of the beer production with our technology?

Since 1970, Fujifilm has been helping beer manufacturers develop new delicious beer.


In the final process of beer production, there is a process of “filtering yeast” so that the taste does not change in cans and bottles. Now we come into play with our technology. The secret: We have adapted the technologies we have accumulated in the photographic field to build porous yeast filters with holes one-millionth of an inch in diameter. This technology is assisting brewers to filter more yeast and bacteria to deliver tastier, high-quality beer.

This evolution in filtration technology made a huge impact on beer production. Since the filter was able to remove the tiny yeast particles, it became possible to put draft beer in cans and bottles without the need for pasteurization. Previously, draft beer had only been available at bars and restaurants. However, using micro filters guarantees the complete removal of yeast and bacteria from the beer without the need for heat treatment, and changes the common sense of beer.

So, the next time you enjoy a Japanese draft beer from a bottle or can, remember the filter from Fujifilm, which is derived from film technology made it possible!

Membrane Technology – Little Barriers

Fujifilm’s polymer engineering expertise made it a market leader in applying thin layers on top of each other to produce a fantastic result: a photographic image. But the company’s expertise today extends far beyond the boundaries of photography. Fujifilm’s technologies can be found in many different industries, from pharmaceuticals and chemicals to power generation. One of them, membrane technology, makes the selective separation of even the finest components in water or gas possible.

The membranes

Ion exchange membrane: there’s a lot more to these wafer-thin membranes than you might think at first glance.

The membranes at the core of this technology are ultrathin sheets developed for different applications that only allow certain particles to pass through them. For example, e-separation technology is based on the principle of an electric field and Coulomb’s law. That’s the law about oppositely charged particles attracting each other and equally charged particles repelling each other. Different membranes are used for e-separation applications which allow either all or only certain particles to pass through depending on the desired result. The membranes used to separate gases operate according to a different principle. Instead of an electric field, they use pressure difference to move molecules through the membranes.

That gives you an outline of how membranes work. Now let’s see how they’re used in practice.

Energy from water

Fujifilm’s Electro-Separation Technology can be used to obtain “blue energy” by exploiting hydropower, but not using a water wheel.

This process is somewhat more complex. Let’s take a look at how it works…

Reverse Electrodialysis (RED) works according to the reversed principle of electrodialysis, using the difference in salinity between saltwater and freshwater to generate energy. Under the influence of an electrical field, the fresh water and salt water try to balance out the ionic charge, creating a field of voltage which can be used to generate energy.

Blue Energy in the Netherlands: relatively small, but very effective at generating renewable energy.

In a RED device, several hundred of ion exchange membrane pairs are stacked together with electrodes at both ends of the membrane stack. When fresh and saltwater is added to the cells – the space between a membrane pair – in an alternate matter, the ions in the water tend to move through the selective membranes to compensate the salinity difference. The selective movement of ions through the membranes create a voltage across the membrane stack as soon as an electrical loop is applied.

The amount of energy gained depends on several factors:

  • salt concentration of the first stream
  • salt concentration of the second stream
  • temperature of both stream
  • flow rate of both streams

Let’s take the “Afsluitdijk” in the Netherlands as an example, where water from the Waddensea meets fresh water from the IJjsselmeer at a disposal rate of, 200 m3/second. The salt concentration ratio of these two bodies of water is 18.8 : 0.35, allowing Fujifilm’s ion exchange membranes to generate around 45 MW of power, which is enough to supply approximately 115,000 households with blue Energy without the emission of greenhouse gasses. Unlike other alternative energy sources such as solar and wind this energy source is constantly available and does not require facilities for energy storage.

Blue Energy pilot plant with an outlined capacity of 50kW at The Afsluitdijk in the Netherlands where salt water from the Waddensea meets fresh water from the IJjsselmeer.

Gas separation

Production and testing of gas separation membranes.

As mentioned earlier, Fujifilm’s membrane technology can be used for a range of applications outside the water sector. Specially developed gas separation membranes are used in the oil and gas production sector to remove certain components of the gases as they are extracted so that when the gas is used to generate energy, it releases fewer pollutants into the atmosphere, reducing negative impacts on both people and the environment.

The natural gas that is transported via special pipelines from the gas field to the consumer has to comply with certain regulations. For example, there is a limit on the amount of hydrogen sulphide (H2S) and carbon dioxide (CO2) content that the gas can have to protect both consumers and pipelines. These undesirable components of the gas mix impair its heating performance and accelerate the pipeline corrosion process.

Whereas Reverse Electrodialysis (RED) uses an electric field to separate ions, the gas separation process uses pressure difference to separate gases. The pressure forces the small-sized molecules of hydrogen sulphide and carbon dioxide through the membrane, leaving the larger methane molecules behind because they are too large to penetrate the thin layers. The spiral wound, multi-layered membranes are designed to withstand high pressure and, at the same time, filter out CO2, H2S and H2O, leaving the methane behind.


A gas separation module. Gas flows through this unit from left to right, filtering out CO2, H2S and H2O.

The gas mix flows into the membrane unit from one side. By exerting pressure, small molecules are caused to penetrate the multi-layer membrane transversely, while the remaining methane constantly follows the stream and flows out of the membrane unit into the next unit, where the process is repeated to remove the remaining CO2 residues from the gas. The membrane units are quick and simple to assemble and dismantle, so they can easily be moved to new oil and gas production areas. The ecological aspect hasn’t been neglected either, despite the fact that crude oil and natural gas production is sometimes viewed as harmful to the environment, because Fujifilm’s gas separation membranes create a safer and chemical-free process that releases less methane and CO2.

Drinking water treatment

Electro-separation technology and the ion exchange membranes are also used for other applications, one of which is the treatment of contaminated groundwater to remove nitrates, bromides, fluorides and other harmful substances to produce potable water. Electrodialysis Reversal (EDR) is based on the same principle as Reverse Electrodialysis (RED), which is used to generate blue Energy. The difference is that that a DC voltage field is applied and there is only one feed water stream flowing evenly through all cells from one side. The electric field generated by the electrodes ensures that positively charged ions (cations) and negatively charged ions (anions) pass through the membranes. This separates the contaminants (concentrate) and the potable water (diluate) alternately into different cells and they ultimately flow out of the stack separately from each other.

Population growth

Human population growth is driving agricultural food production and livestock population growth, which in turn is leading to an increase in fertilizer use and animal manure volumes. Those fertilizers and the ammonia from the manure are slowly but steadily seeping into our groundwater as nitrates. Fujifilm’s membrane technology solves this in two ways. Firstly, it removes ammonia (NH4+) from the liquid manure at the farms to prevent groundwater contamination. And, secondly, it removes the nitrates from contaminated groundwater so that it can be used as a potable water supply again.